import os import random import sys from typing import Sequence, Mapping, Any, Union import torch import boto3 from flask import Flask, jsonify, request app = Flask(__name__) def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any: """Returns the value at the given index of a sequence or mapping. If the object is a sequence (like list or string), returns the value at the given index. If the object is a mapping (like a dictionary), returns the value at the index-th key. Some return a dictionary, in these cases, we look for the "results" key Args: obj (Union[Sequence, Mapping]): The object to retrieve the value from. index (int): The index of the value to retrieve. Returns: Any: The value at the given index. Raises: IndexError: If the index is out of bounds for the object and the object is not a mapping. """ try: return obj[index] except KeyError: return obj["result"][index] def find_path(name: str, path: str = None) -> str: """ Recursively looks at parent folders starting from the given path until it finds the given name. Returns the path as a Path object if found, or None otherwise. """ # If no path is given, use the current working directory if path is None: path = os.getcwd() # Check if the current directory contains the name if name in os.listdir(path): path_name = os.path.join(path, name) print(f"{name} found: {path_name}") return path_name # Get the parent directory parent_directory = os.path.dirname(path) # If the parent directory is the same as the current directory, we've reached the root and stop the search if parent_directory == path: return None # Recursively call the function with the parent directory return find_path(name, parent_directory) def add_comfyui_directory_to_sys_path() -> None: """ Add 'ComfyUI' to the sys.path """ comfyui_path = find_path("ComfyUI") if comfyui_path is not None and os.path.isdir(comfyui_path): sys.path.append(comfyui_path) print(f"'{comfyui_path}' added to sys.path") def add_extra_model_paths() -> None: """ Parse the optional extra_model_paths.yaml file and add the parsed paths to the sys.path. """ try: from server import load_extra_path_config except ImportError: print( "Could not import load_extra_path_config from main.py. Looking in utils.extra_config instead." ) try: from utils.extra_config import load_extra_path_config except ImportError: return extra_model_paths = find_path("extra_model_paths.yaml") if extra_model_paths is not None: load_extra_path_config(extra_model_paths) else: print("Could not find the extra_model_paths config file.") add_comfyui_directory_to_sys_path() add_extra_model_paths() def import_custom_nodes() -> None: """Find all custom nodes in the custom_nodes folder and add those node objects to NODE_CLASS_MAPPINGS This function sets up a new asyncio event loop, initializes the PromptServer, creates a PromptQueue, and initializes the custom nodes. """ import asyncio import execution from nodes import init_extra_nodes import server # Creating a new event loop and setting it as the default loop loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) # Creating an instance of PromptServer with the loop server_instance = server.PromptServer(loop) execution.PromptQueue(server_instance) # Initializing custom nodes init_extra_nodes() from nodes import ( VAEDecode, KSampler, NODE_CLASS_MAPPINGS, VAELoader, VAEEncode, CheckpointLoaderSimple, CLIPTextEncode, EmptyLatentImage, LoraLoader, ) def generate_image(prompt: str, negative_prompt: str): import_custom_nodes() with torch.inference_mode(): checkpointloadersimple = CheckpointLoaderSimple() checkpointloadersimple_4 = checkpointloadersimple.load_checkpoint( ckpt_name="counterfeitV30_v30.safetensors" ) emptylatentimage = EmptyLatentImage() emptylatentimage_5 = emptylatentimage.generate( width=768, height=384, batch_size=1 ) loraloader = LoraLoader() loraloader_51 = loraloader.load_lora( lora_name="pastelMixStylizedAnime_pastelMixLoraVersion.safetensors", strength_model=1, strength_clip=1, model=get_value_at_index(checkpointloadersimple_4, 0), clip=get_value_at_index(checkpointloadersimple_4, 1), ) loraloader_61 = loraloader.load_lora( lora_name="ligne_claire_anime.safetensors", strength_model=1, strength_clip=1, model=get_value_at_index(loraloader_51, 0), clip=get_value_at_index(loraloader_51, 1), ) cliptextencode = CLIPTextEncode() cliptextencode_6 = cliptextencode.encode( text=f"(masterpiece, best quality), {prompt}", clip=get_value_at_index(loraloader_61, 1), ) vaeloader = VAELoader() vaeloader_12 = vaeloader.load_vae(vae_name="sdVAEForAnime_v10.pt") cliptextencode_38 = cliptextencode.encode( text=f"embedding:easynegative, embedding:negative_hand-neg, embedding:7dirtywords, {negative_prompt}", clip=get_value_at_index(loraloader_61, 1), ) ksampler = KSampler() ksampler_3 = ksampler.sample( seed=random.randint(1, 2**64), steps=26, cfg=6, sampler_name="dpmpp_2m", scheduler="karras", denoise=1, model=get_value_at_index(loraloader_61, 0), positive=get_value_at_index(cliptextencode_6, 0), negative=get_value_at_index(cliptextencode_38, 0), latent_image=get_value_at_index(emptylatentimage_5, 0), ) vaedecode = VAEDecode() vaedecode_47 = vaedecode.decode( samples=get_value_at_index(ksampler_3, 0), vae=get_value_at_index(vaeloader_12, 0), ) imagesharpen = NODE_CLASS_MAPPINGS["ImageSharpen"]() imagesharpen_85 = imagesharpen.sharpen( sharpen_radius=1, sigma=1, alpha=1, image=get_value_at_index(vaedecode_47, 0), ) vaeencode = VAEEncode() vaeencode_86 = vaeencode.encode( pixels=get_value_at_index(imagesharpen_85, 0), vae=get_value_at_index(vaeloader_12, 0), ) nnlatentupscale = NODE_CLASS_MAPPINGS["NNLatentUpscale"]() saveimages3 = NODE_CLASS_MAPPINGS["SaveImageS3"]() nnlatentupscale_31 = nnlatentupscale.upscale( version="SD 1.x", upscale=1.5, latent=get_value_at_index(vaeencode_86, 0), ) ksampler_53 = ksampler.sample( seed=random.randint(1, 2**64), steps=30, cfg=6, sampler_name="dpmpp_2m", scheduler="karras", denoise=1, model=get_value_at_index(loraloader_61, 0), positive=get_value_at_index(cliptextencode_6, 0), negative=get_value_at_index(cliptextencode_38, 0), latent_image=get_value_at_index(nnlatentupscale_31, 0), ) vaedecode_42 = vaedecode.decode( samples=get_value_at_index(ksampler_53, 0), vae=get_value_at_index(vaeloader_12, 0), ) saveimages3_89 = saveimages3.save_images( filename_prefix="waifu", images=get_value_at_index(vaedecode_42, 0) ) return get_value_at_index(saveimages3_89, 0) def generate_presigned_url(bucket_name: str, object_name: str, expiration: int = 3600): s3_client = boto3.client( "s3", aws_access_key_id=os.environ["AWS_ACCESS_KEY_ID"], aws_secret_access_key=os.environ["AWS_SECRET_ACCESS_KEY"], endpoint_url=os.environ["AWS_ENDPOINT_URL_S3"], region_name=os.environ.get("AWS_REGION", None), ) try: response = s3_client.generate_presigned_url( "get_object", Params={"Bucket": bucket_name, "Key": object_name}, ExpiresIn=expiration, ) except Exception as e: print(f"Error generating presigned URL: {e}") return None return response @app.route("/", methods=["GET"]) def read_root(): return jsonify({"Hello": "World"}) @app.route("/health-check", methods=["GET"]) def health_check(): return jsonify({"status": "READY"}) @app.route("/generate", methods=["POST"]) def generate(): content_type = request.headers.get('Content-Type') if (content_type == 'application/json'): json = request.json else: return 'Content-Type not supported!' image_response = generate_image(json["prompt"], json["negative_prompt"]) return jsonify({ "fname": image_response, "url": generate_presigned_url( os.getenv("BUCKET_NAME", "comfyui"), image_response[0] ), }) if __name__ == "__main__": app.run(host="0.0.0.0", port=8080)