first commit

This commit is contained in:
Xe Iaso 2025-01-07 18:30:07 -05:00
commit bce43c8b33
Signed by: xe
SSH Key Fingerprint: SHA256:7EWsWanxCI427bJ0t3CA6LyqXnkPajReCxkUhbpJULU
5 changed files with 444 additions and 0 deletions

16
Dockerfile Normal file
View File

@ -0,0 +1,16 @@
FROM ghcr.io/lecode-official/comfyui-docker:latest
RUN pip install Flask \
&& git clone https://github.com/TemryL/ComfyS3 /opt/comfyui/custom_nodes/comfys3 \
&& pip install -r /opt/comfyui/custom_nodes/comfys3/requirements.txt \
&& rm -rf /opt/comfyui/custom_nodes/comfys3/.git \
&& rm /opt/comfyui/custom_nodes/comfys3/.env \
&& touch /opt/comfyui/custom_nodes/comfys3/.env \
&& git clone https://github.com/Ttl/ComfyUi_NNLatentUpscale /opt/comfyui/custom_nodes/ComfyUi_NNLatentUpscale \
&& rm -rf /opt/comfyui/custom_nodes/ComfyUi_NNLatentUpscale/.git
COPY waifuwave.py .
COPY fetch_models.py .
COPY startup.sh .
CMD ["/opt/comfyui/startup.sh"]

94
fetch_models.py Normal file
View File

@ -0,0 +1,94 @@
from multiprocessing import Pool
from typing import Generator, Iterable, List
from urllib.parse import urlparse
import os
import boto3
models = [
"checkpoints/counterfeitV30_v30.safetensors",
"embeddings/7dirtywords.pt",
"embeddings/easynegative.safetensors",
"embeddings/negative_hand-neg.pt",
"loras/pastelMixStylizedAnime_pastelMixLoraVersion.safetensors",
"loras/ligne_claire_anime.safetensors",
"vae/sdVAEForAnime_v10.pt",
]
def batcher(iterable: Iterable, batch_size: int) -> Generator[List, None, None]:
"""Batch an iterator. The last item might be of smaller len than batch_size.
Args:
iterable (Iterable): Any iterable that should be batched
batch_size (int): Len of the generated lists
Yields:
Generator[List, None, None]: List of items in iterable
"""
batch = []
counter = 0
for i in iterable:
batch.append(i)
counter += 1
if counter % batch_size == 0:
yield batch
batch = []
if len(batch) > 0:
yield batch
def download_batch(batch) -> int:
s3 = boto3.client("s3")
n = 0
for line in batch:
line, destdir = line
url = urlparse(line)
url_path = url.path.lstrip("/")
folder, basename = os.path.split(url_path)
dir = os.path.join(destdir, folder)
os.makedirs(dir, exist_ok=True)
filepath = os.path.join(dir, basename)
if os.path.exists(filepath):
print(f"{line} already exists")
continue
print(f"{line} -> {filepath}")
s3.download_file(url.netloc, url_path, filepath)
n += 1
return n
def copy_from_tigris(
models: List[str] = models,
bucket_name: str = os.getenv("BUCKET_NAME", "comfyui"),
destdir: str = "/opt/comfyui",
n_cpus: int = os.cpu_count()
):
"""Copy files from Tigris to the destination folder. This will be done in parallel.
Args:
models (List[str]): List of models to download. Defaults to the list of models in this file.
bucket_name (str): Tigris bucket to query. Defaults to envvar $BUCKET_NAME.
destdir (str): path to store the files.
n_cpus (int): number of simultaneous batches. Defaults to the number of cpus in the computer.
"""
model_files = [ (f"s3://{bucket_name}/models/{x}", destdir) for x in models ]
print(f"using {n_cpus} cpu cores for downloads")
n_cpus = min(len(model_files), n_cpus)
batch_size = len(model_files) // n_cpus
with Pool(processes=n_cpus) as pool:
for n in pool.imap_unordered(
download_batch, batcher(model_files, batch_size)
):
pass
if __name__ == "__main__":
copy_from_tigris(n_cpus=999)

26
fly.toml Normal file
View File

@ -0,0 +1,26 @@
# fly.toml app configuration file generated for waifuwave on 2025-01-07T17:07:19-05:00
#
# See https://fly.io/docs/reference/configuration/ for information about how to use this file.
#
app = 'waifuwave'
primary_region = 'ord'
vm.size = "l40s"
[build]
[http_service]
internal_port = 8080
force_https = true
auto_stop_machines = 'stop'
auto_start_machines = true
min_machines_running = 0
processes = ['app']
[[http_service.checks]]
grace_period = "10s"
interval = "5s"
method = "GET"
timeout = "5s"
path = "/"

13
startup.sh Executable file
View File

@ -0,0 +1,13 @@
#!/usr/bin/env bash
export S3_REGION="${AWS_REGION}"
export S3_ACCESS_KEY="${AWS_ACCESS_KEY_ID}"
export S3_SECRET_KEY="${AWS_SECRET_ACCESS_KEY}"
export S3_BUCKET_NAME="${BUCKET_NAME}"
export S3_ENDPOINT_URL="${AWS_ENDPOINT_URL_S3}"
export S3_INPUT_DIR="input"
export S3_OUTPUT_DIR="output"
python fetch_models.py
python waifuwave.py --host=0.0.0.0 --port=8080

295
waifuwave.py Normal file
View File

@ -0,0 +1,295 @@
import os
import random
import sys
from typing import Sequence, Mapping, Any, Union
import torch
import boto3
from flask import Flask, jsonify, request
app = Flask(__name__)
def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any:
"""Returns the value at the given index of a sequence or mapping.
If the object is a sequence (like list or string), returns the value at the given index.
If the object is a mapping (like a dictionary), returns the value at the index-th key.
Some return a dictionary, in these cases, we look for the "results" key
Args:
obj (Union[Sequence, Mapping]): The object to retrieve the value from.
index (int): The index of the value to retrieve.
Returns:
Any: The value at the given index.
Raises:
IndexError: If the index is out of bounds for the object and the object is not a mapping.
"""
try:
return obj[index]
except KeyError:
return obj["result"][index]
def find_path(name: str, path: str = None) -> str:
"""
Recursively looks at parent folders starting from the given path until it finds the given name.
Returns the path as a Path object if found, or None otherwise.
"""
# If no path is given, use the current working directory
if path is None:
path = os.getcwd()
# Check if the current directory contains the name
if name in os.listdir(path):
path_name = os.path.join(path, name)
print(f"{name} found: {path_name}")
return path_name
# Get the parent directory
parent_directory = os.path.dirname(path)
# If the parent directory is the same as the current directory, we've reached the root and stop the search
if parent_directory == path:
return None
# Recursively call the function with the parent directory
return find_path(name, parent_directory)
def add_comfyui_directory_to_sys_path() -> None:
"""
Add 'ComfyUI' to the sys.path
"""
comfyui_path = find_path("ComfyUI")
if comfyui_path is not None and os.path.isdir(comfyui_path):
sys.path.append(comfyui_path)
print(f"'{comfyui_path}' added to sys.path")
def add_extra_model_paths() -> None:
"""
Parse the optional extra_model_paths.yaml file and add the parsed paths to the sys.path.
"""
try:
from server import load_extra_path_config
except ImportError:
print(
"Could not import load_extra_path_config from main.py. Looking in utils.extra_config instead."
)
try:
from utils.extra_config import load_extra_path_config
except ImportError:
return
extra_model_paths = find_path("extra_model_paths.yaml")
if extra_model_paths is not None:
load_extra_path_config(extra_model_paths)
else:
print("Could not find the extra_model_paths config file.")
add_comfyui_directory_to_sys_path()
add_extra_model_paths()
def import_custom_nodes() -> None:
"""Find all custom nodes in the custom_nodes folder and add those node objects to NODE_CLASS_MAPPINGS
This function sets up a new asyncio event loop, initializes the PromptServer,
creates a PromptQueue, and initializes the custom nodes.
"""
import asyncio
import execution
from nodes import init_extra_nodes
import server
# Creating a new event loop and setting it as the default loop
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
# Creating an instance of PromptServer with the loop
server_instance = server.PromptServer(loop)
execution.PromptQueue(server_instance)
# Initializing custom nodes
init_extra_nodes()
from nodes import (
VAEDecode,
KSampler,
NODE_CLASS_MAPPINGS,
VAELoader,
VAEEncode,
CheckpointLoaderSimple,
CLIPTextEncode,
EmptyLatentImage,
LoraLoader,
)
def generate_image(prompt: str, negative_prompt: str):
import_custom_nodes()
with torch.inference_mode():
checkpointloadersimple = CheckpointLoaderSimple()
checkpointloadersimple_4 = checkpointloadersimple.load_checkpoint(
ckpt_name="counterfeitV30_v30.safetensors"
)
emptylatentimage = EmptyLatentImage()
emptylatentimage_5 = emptylatentimage.generate(
width=768, height=384, batch_size=1
)
loraloader = LoraLoader()
loraloader_51 = loraloader.load_lora(
lora_name="pastelMixStylizedAnime_pastelMixLoraVersion.safetensors",
strength_model=1,
strength_clip=1,
model=get_value_at_index(checkpointloadersimple_4, 0),
clip=get_value_at_index(checkpointloadersimple_4, 1),
)
loraloader_61 = loraloader.load_lora(
lora_name="ligne_claire_anime.safetensors",
strength_model=1,
strength_clip=1,
model=get_value_at_index(loraloader_51, 0),
clip=get_value_at_index(loraloader_51, 1),
)
cliptextencode = CLIPTextEncode()
cliptextencode_6 = cliptextencode.encode(
text=f"(masterpiece, best quality), {prompt}",
clip=get_value_at_index(loraloader_61, 1),
)
vaeloader = VAELoader()
vaeloader_12 = vaeloader.load_vae(vae_name="sdVAEForAnime_v10.pt")
cliptextencode_38 = cliptextencode.encode(
text=f"embedding:easynegative, embedding:negative_hand-neg, embedding:7dirtywords, {negative_prompt}",
clip=get_value_at_index(loraloader_61, 1),
)
ksampler = KSampler()
ksampler_3 = ksampler.sample(
seed=random.randint(1, 2**64),
steps=26,
cfg=6,
sampler_name="dpmpp_2m",
scheduler="karras",
denoise=1,
model=get_value_at_index(loraloader_61, 0),
positive=get_value_at_index(cliptextencode_6, 0),
negative=get_value_at_index(cliptextencode_38, 0),
latent_image=get_value_at_index(emptylatentimage_5, 0),
)
vaedecode = VAEDecode()
vaedecode_47 = vaedecode.decode(
samples=get_value_at_index(ksampler_3, 0),
vae=get_value_at_index(vaeloader_12, 0),
)
imagesharpen = NODE_CLASS_MAPPINGS["ImageSharpen"]()
imagesharpen_85 = imagesharpen.sharpen(
sharpen_radius=1,
sigma=1,
alpha=1,
image=get_value_at_index(vaedecode_47, 0),
)
vaeencode = VAEEncode()
vaeencode_86 = vaeencode.encode(
pixels=get_value_at_index(imagesharpen_85, 0),
vae=get_value_at_index(vaeloader_12, 0),
)
nnlatentupscale = NODE_CLASS_MAPPINGS["NNLatentUpscale"]()
saveimages3 = NODE_CLASS_MAPPINGS["SaveImageS3"]()
nnlatentupscale_31 = nnlatentupscale.upscale(
version="SD 1.x",
upscale=2.0,
latent=get_value_at_index(vaeencode_86, 0),
)
ksampler_53 = ksampler.sample(
seed=random.randint(1, 2**64),
steps=30,
cfg=6,
sampler_name="dpmpp_2m",
scheduler="karras",
denoise=1,
model=get_value_at_index(loraloader_61, 0),
positive=get_value_at_index(cliptextencode_6, 0),
negative=get_value_at_index(cliptextencode_38, 0),
latent_image=get_value_at_index(nnlatentupscale_31, 0),
)
vaedecode_42 = vaedecode.decode(
samples=get_value_at_index(ksampler_53, 0),
vae=get_value_at_index(vaeloader_12, 0),
)
saveimages3_89 = saveimages3.save_images(
filename_prefix="waifu", images=get_value_at_index(vaedecode_42, 0)
)
return get_value_at_index(saveimages3_89, 0)
def generate_presigned_url(bucket_name: str, object_name: str, expiration: int = 3600):
s3_client = boto3.client(
"s3",
aws_access_key_id=os.environ["AWS_ACCESS_KEY_ID"],
aws_secret_access_key=os.environ["AWS_SECRET_ACCESS_KEY"],
endpoint_url=os.environ["AWS_ENDPOINT_URL_S3"],
region_name=os.environ.get("AWS_REGION", None),
)
try:
response = s3_client.generate_presigned_url(
"get_object",
Params={"Bucket": bucket_name, "Key": object_name},
ExpiresIn=expiration,
)
except Exception as e:
print(f"Error generating presigned URL: {e}")
return None
return response
@app.route("/", methods=["GET"])
def read_root():
return jsonify({"Hello": "World"})
@app.route("/generate", methods=["POST"])
def generate():
content_type = request.headers.get('Content-Type')
if (content_type == 'application/json'):
json = request.json
else:
return 'Content-Type not supported!'
image_response = generate_image(json["prompt"], json["negative_prompt"])
return jsonify({
"fname": image_response,
"url": generate_presigned_url(
os.getenv("BUCKET_NAME", "comfyui"), image_response[0]
),
})
if __name__ == "__main__":
app.run(host="0.0.0.0", port=8080)